Metabolism of Cities
  • About

    About Us

    • Our Story
    • Mission & Values
    • Team
    • Task Forces
    • Services

    Connect With Us

    • ContributeJoin Us
    • Subscribe
    • Contact Us
  • Community

    Research

    • Projects
    • Theses
    • ContributeAdd Research
    • People

    Updates

    • Events
    • News
  • Resources

    Getting Started

    • About Urban Metabolism
    • Starter Kit

    Multimedia

    • Photos
    • Videos

    Publications

    • Library
    • Journals
    • ContributeAdd Publication

    Data

    • Datasets
    • Data Visualisations

    Tools

    • Online Material Flow Analysis Tool (OMAT)
    • MOOC
  • Cities

    MultipliCity - Data Portals

    • Introduction
    • Video
    • Add DataContribute
    • Data Collection Events
    • Development Roadmap
    • Datasets

    Existing Data Portals

    • Prototype: Cape Town, South Africa
    • Prototype: The Hague, Netherlands
    • Prototype: Beijing, China
    • Overview page

    Upcoming Data Portals

    • Apeldoorn, Netherlands Coming soon
    • Bødo, Norway Coming soon
    • Brussels, Belgium Coming soon
    • Høje Taastrup, Denmark Coming soon
    • Mikkeli, Finland Coming soon
    • Porto, Portugal Coming soon
    • Sevilla, Spain Coming soon
    • Toronto, Canada Coming soon
    • Your city?
    • Orange Theme
    • Blue Theme
    • Metabolism of Cities
    • Metabolism of Islands

Publications

  1. Resources
  2. Publications
  3. Publication #421

Bibtex

@article{reference_tag,
  author = "Kennedy, Christopher A. and Bachmann, Christian",
  title = "The Energy Structure of the Canadian Economy",
  journal = "Journal of Industrial Ecology",
  year = 2016,
  abstract = "We developed a model of a national economy in which the phenomena of supply, demand, economic growth, and international trade are represented in terms of energy flows. In examining the structure of the economy, we distinguish between the energy embodied in capital assets used in the production and distribution of energy and that embodied in capital assets and goods that consume energy. Sources used to quantify the energy flows include: end-use energy data by economic sector; International Energy Agency-style national energy balances, and national input-output tables. As an example, the Canadian economy for 2008 produced 16.97 exajoules (EJ) of energy, which after net export of 6.16 EJ and other adjustments left a total primary energy consumption of 10.61 EJ. The energy supply and distribution sectors used close to 32% (3.36 EJ) of total primary consumption. Analysis of primary energy consumption shows that 25.14% was embodied in household consumption, 22.85% was consumed directly by households, 7.88% was embodied in government services, and 34.07% was embodied in exports. Of significance to economic growth, 7.14% was embodied in capital in energy demanding sectors, 1.25% in energy consuming personal assets, and 1.52% in supply sector capital. The energy return on energy investment was relatively constant, averaging 5.14 between 1990 and 2008. Capital investments required to decouple the Canadian economy from its dependence on fossil fuels are discerned.",
  doi = "10.1111/jiec.12493",
}

RIS

TY  - JOUR
T1 - The Energy Structure of the Canadian Economy
AU - Kennedy, Christopher A. and Bachmann, Christian
Y1 - 2016
DO - 10.1111/jiec.12493
N2 - We developed a model of a national economy in which the phenomena of supply, demand, economic growth, and international trade are represented in terms of energy flows. In examining the structure of the economy, we distinguish between the energy embodied in capital assets used in the production and distribution of energy and that embodied in capital assets and goods that consume energy. Sources used to quantify the energy flows include: end-use energy data by economic sector; International Energy Agency-style national energy balances, and national input-output tables. As an example, the Canadian economy for 2008 produced 16.97 exajoules (EJ) of energy, which after net export of 6.16 EJ and other adjustments left a total primary energy consumption of 10.61 EJ. The energy supply and distribution sectors used close to 32% (3.36 EJ) of total primary consumption. Analysis of primary energy consumption shows that 25.14% was embodied in household consumption, 22.85% was consumed directly by households, 7.88% was embodied in government services, and 34.07% was embodied in exports. Of significance to economic growth, 7.14% was embodied in capital in energy demanding sectors, 1.25% in energy consuming personal assets, and 1.52% in supply sector capital. The energy return on energy investment was relatively constant, averaging 5.14 between 1990 and 2008. Capital investments required to decouple the Canadian economy from its dependence on fossil fuels are discerned.
ER - 

Journal Article

2016

Author(s)

  • Christian Bachmann
  • Christopher Kennedy

Reference

  • Bibtex
  • RIS
  • RefWorks

Search

  • Google Scholar
  • Google

More options

Add a publication

Report error

The Energy Structure of the Canadian Economy

Journal of Industrial Ecology

Journal of Industrial Ecology

We developed a model of a national economy in which the phenomena of supply, demand, economic growth, and international trade are represented in terms of energy flows. In examining the structure of the economy, we distinguish between the energy embodied in capital assets used in the production and distribution of energy and that embodied in capital assets and goods that consume energy. Sources used to quantify the energy flows include: end-use energy data by economic sector; International Energy Agency-style national energy balances, and national input-output tables. As an example, the Canadian economy for 2008 produced 16.97 exajoules (EJ) of energy, which after net export of 6.16 EJ and other adjustments left a total primary energy consumption of 10.61 EJ. The energy supply and distribution sectors used close to 32% (3.36 EJ) of total primary consumption. Analysis of primary energy consumption shows that 25.14% was embodied in household consumption, 22.85% was consumed directly by households, 7.88% was embodied in government services, and 34.07% was embodied in exports. Of significance to economic growth, 7.14% was embodied in capital in energy demanding sectors, 1.25% in energy consuming personal assets, and 1.52% in supply sector capital. The energy return on energy investment was relatively constant, averaging 5.14 between 1990 and 2008. Capital investments required to decouple the Canadian economy from its dependence on fossil fuels are discerned.

Tags

  • National
  • Physical input-output tables (PIOT) / Input-Output Assessment (IOA)

More information

10.1111/jiec.12493

  • Literature
  • Publications
  • Journals
  • Events
  • Publishers

Latest news

Urban metabolism seminar in Brussels - update
Sept. 20, 2019

Read more

Do you have data on resource flows?

Share data

We can use your help

Join us

Upcoming event

W12 Congress: First International Meeting of Cities Facing a “Day Zero” Water Scenario
Cape Town, South Africa
Jan 27, 2020 - Jan 31, 2020

View event

Metabolism of Cities

Creative Commons Attribution 4.0 International license.

Our source code is available on
Gitlab

Contact us

Follow Us

Metabolism of Islands

Visit our twin site:
Metabolism of Islands